





# Fine tracking for laser flux stabilization on an optical detector for space-to-ground laser link communication

## N. Maurice

& E. Samain, D-H. Phung, J. Chabe, C. Courde, H. Mariey, D. Albanese, M. Aimar, G.M. Lagarde, H. Viot

Observatoire de la Côte d'Azur, Laboratoire Géoazur, 2130 Route de l'Observatoire 06460 CAUSSOLS

ILRS technical workshop,
Stuttgart, October 22<sup>nd</sup> 2019







## space-to-ground laser link: what for?

secured link: laser is directional

- higher flux than RF link:
  - >10 Gbps vs 500 Mbps







# space-to-ground laser link: how it works









# space-to-ground laser link: how it works









## <u>close loop pointing</u>: a real challenge

## constraints:

- size of the spot (telescope diffraction, seeing): a few arcsec
- field of view of the optical detector: 30 arcsec
- low earth orbit satellite : high tracking speed

#### error sources:

- prediction of the satellite (up to several arcmin)
- pointing of both telescopes (OGS and satellite)
- atmospheric turbulence







# solution proposed: double visual servoing

- wide field camera: coarse tracking with the telescope
  - correct the low frequency errors ( a few arcmin )

- small field camera: fine tracking with a tip-tilt mirror
  - correct the higher frequency errors ( a few arcsec )



512 pixel = 1760 arcsec









APD telecom 30 arcsec







## wide field camera: telescope control



IR camera to see the wavelenght of the descending laser fixed on a 200 mm telescope mounted on the 1.5 m telescope

- → does not "steal" any flux for the optical bench
- → add a parallax error to be taken into account





# small field camera: tip-tilt control

installed on an optical bench at the coude focus



coude focus add a rotation transform to be taken into account















# Servoing loop: numerical PID controller

- Telescope control: 10 Hz (volontary limited due to the low BW of the system)
- Tip-tilt control: 50 Hz (limitation = camera frame rate due to minimal exposure required)









- 90% Triangle Beam splitter → 3 sub-aperture channels (40cm)
  - 1. Telecom APD detector
  - 2. WaveFront sensor (high speed IR camera)
  - 3. LISA ONERA (Adaptive Optic → fiber coupling)
- 10% Fine tracking by TipTilt mirror + camera → Pupil stabilization



camera









## **Protocol**:

#### Before the pass

correct the parallax error at a low elevation before the pass

#### Beginning of the pass

search and center the spot on the wide fov camera

close the first servoing loop (wide fov camera + telescope)

correction of the prediction error (LF)

close the second servoing loop (small fov camera + tip-tilt)

correction of higher frequency errors (telescop vibration, atm., etc...)





what about the parallax ???







# correcting the parallax error:

- Modelization
  - measurement report on stars, curve fitting (before the pass)
  - application of the law found on PID corrections (during the pass)
- Real-time measurement and correction







Both loops are closed, the spot is locked on the servoing reference (red cross)











#### elevation correction



#### tip correction



As the parallax angle varies, the corrections increase, and the tip-tilt mirror gets slowly closer to its mechanical limits...







... it asks the telescope to move its servoing reference...













... so it can return to the middle of its range







#### Pointing angles



### Satellite altitude:

## 600 km









tip-tilt corrections



Tracking error - Tip-Tilt mirror



rms: 1.1 arcsec

















## **Limitation**:

very bad prediction → big errors to correct → the telescope cannot correct all (low bandwidth)

a drag appears getting stronger as the elevation angle increase

"smooth" drag

move the servoing reference

spot stays stable

too strong drag

spot is lost







## Possible solutions:

- Better prediction
- Estimation and correction of the time bias

- Adding an integrator in the servoing loop ( hard to tune, instable!)
- Advanced control method such as H infinite ( time-consuming )







## **Conclusion:**

telescope coarse tracking (large fov, slow)

- + tt mirror fine tracking ( small fov, fast )
- + tt mirror de-saturation by telescope

enable to maintain the spot on the detector with an accuracy of 1.1 arcsec rms







## Perspective:

#### improving SLR results on LEO satellites enlightened (sun or a rising beacon) by :

- maintaining return photons (reflected by the satellite) on the chronometry detector during the pass
- optimizing the focusing on the detector to avoid inhomogeneity of the sensitive surface
- using smaller detectors with higher bandwidths
- keeping a constant flux to:
  - stay in "single-photon"
  - homogenize the number of echoes/normal point